Clinical Research

ENT Updates 2016;6(1):5–11
doi:10.2399/jmu.2016001005

Potential pitfalls of computed tomography in advanced laryngeal cancer

Hale Aslan¹, Ercan Pınar¹, Sedat Öztürkcan², İbrahim Aladağ³, Nezahat Karaca Erdoğan³, Demet Etiring, Bilge Demirkol Tuna⁴, Abdulkadir İmre⁵, Yüksel Olgun⁵, Düzgün Ateş⁶

¹Department of Otorhinolaryngology, School of Medicine, İzmir Katip Çelebi University, İzmir, Turkey
²Department of Otorhinolaryngology, Atatürk Research and Training Hospital, İzmir Katip Çelebi University, İzmir, Turkey
³Department of Radiology, Atatürk Research and Training Hospital, İzmir Katip Çelebi University, İzmir, Turkey
⁴Department of Otorhinolaryngology, Bursa Şevket Yılmaz Research and Training Hospital, Bursa, Turkey
⁵Department of Otorhinolaryngology, School of Medicine, İzmir Dokuz Eylül University, İzmir, Turkey

Abstract

Objective: In laryngeal cancer the most suspected regions of invasion are preepiglottic space (PES), anterior commissure (AC), thyroid cartilage (TC), subglottic region (SR) and extralaryngeal spread (ELS). The objective of this study is to compare the results of preoperative computed tomography (CT) with postoperative histopathologic analysis in these critical regions for the total or partial laryngectomy.

Methods: Eighty-nine patients, who had undergone total laryngectomy with a diagnosis of laryngeal cancer reported that squamous cell carcinoma (SCC) between 2005 and 2013, were reviewed retrospectively. All the patients, after the first application done total laryngectomy before flexible laryngoscopy, computed tomography for the neck and endoscopic biopsy with direct laryngoscopy. Histopathological results before flexible laryngoscopy, computed tomography for the neck and postoperative histopathologic analysis in the critical regions for total or partial laryngectomy.

Results: All the patients were male, median age was 67 (range: 48 to 81) years. Fifty-six patients were in T4 and 33 patients in T3 stage. Compared to results between positive CT findings and negative histopathological examination; PES invasion in 41 patients/ 5 patients, AC invasion was found in 38/15 patients, TC invasion in 28/16 patients, SR invasion in 49/9 patients and ELS invasion in 25/7 patients. Accuracy of PES, AC, TC, ELS and SR invasion are compared to preoperative CT findings and determined of specificity, sensitivity, false negative and false positive results and rate of accuracy.

Conclusion: In all regions invasion, CT has a low diagnostic reliability in high-grade laryngeal cancer in our study. We suggested that histopathological results are the gold standard intraoperatively for determining total or partial laryngectomy.

Keywords: Computed tomography, larynx carcinoma, accuracy.
Laryngeal cancer is the second most common head and neck cancer after thyroid cancer. The 5-year survival rate exceeds 90% if the patient is diagnosed at an early stage and 60% to 70% otherwise.[1] The aim of surgery is to achieve local control while preserving the functions of speech and swallowing without a permanent tracheostomy. Conservative surgery with radiotherapy (RT) is a good option if possible.[2] However, total laryngectomy is required if there is extralaryngeal spread (ELS) or invasion of the pre-epiglottic space (PES), thyroid cartilage (TC), arytenoid cartilage (AC), SR, or interarytenoid region.[3]

Before planning cancer surgery, staging is important and might necessitate indirect laryngoscopy, imaging, and biopsy under direct laryngoscopy.[4] However, submucosal and deep invasion cannot be identified with indirect or direct laryngoscopy. Sagittal or coronal radiological imaging should be performed to detect ELS and deep invasion, especially of the PES, AC, SR, and TC.[5] This report compares computed tomography (CT) findings with surgical and histopathological findings to determine the reliability of CT in advanced laryngeal cancer.

Materials and Methods

The study retrospectively reviewed 89 patients (stage T4, n=56; stage T3, n=33) who underwent total laryngectomy for treatment of high-grade laryngeal cancer from 2005 to 2013. The study was approved by the local institutional review board. All tumors were reported as squamous cell carcinoma (SCC). Patients with history of preoperative laryngeal surgery or RT were excluded from the study. All of the patients were male with an average age of 67 (range: 48 to 81) years. After a detailed inspection using flexible nasopharyngolaryngoscopy, CT imaging was performed using an Aquilion 64 system (Toshiba, Tokyo, Japan), and 64 sections of the larynx were obtained. Transverse images were obtained (120 kV, 200 mAS, 2-mm section thickness) during normal inspiration after injecting ionizing contrast fluid. All CT images were inspected by a radiologist with 10 years of experience in head and neck radiology, and any suspicion of invasion was accepted as a site of invasion. A pathologist with 10 years of experience in head and neck pathology examined the specimens histopathologically. The total laryngectomy specimens were fixed in formalin and paraffin, cut into 3- to 4-μm-thick slices, stained with hematoxylin and eosin, and inspected under light microscopy.

The histopathological results of ELS and invasion of the PES, AC, TC, and SR were compared with the preoperative CT findings (Figs. 1–5). The McNemar test and Z-test were used for the statistical analysis. Data were analyzed using SPSS Statistics version 22 (IBM Corp., Armonk, NY, USA). A p value of <0.05 was accepted as statistically significant.

![Fig. 1. (a) Contrasted axial CT imaging of epiglottis with infiltrative tumor, preepiglottic spread (arrow), and (b) its histopathological image (HE ×10).](image-url)
Results

Pre-epiglottic space invasion was found on the preoperative CT images in 41 patients, 5 of whom had negative histopathological findings. The sensitivity, specificity, false-negative, false-positive, and accuracy rates of the CT findings for PES invasion were 83%, 87%, 16%, 12%, and 85%, respectively (Table 1). SR invasion was seen on CT in 49 patients, 9 of whom had negative histopathological findings; the sensitivity, specificity, false-negative, false-positive, and accuracy rates were 79%, 70%, 15%, 29%, and 79%, respec-

![Fig. 2. (a) Contrasted axial CT imaging of a primary tumor located on right vocal cord and anterior commissure (arrow) and (b) its histopathological image (HE x20).](image)

![Fig. 3. (a) Contrasted axial CT imaging of thyroid cartilage with invasion especially on the right side and (b) its histopathological image (HE x10).](image)
AC invasion was seen on CT in 38 patients, 15 of whom had negative histopathological findings; the sensitivity, specificity, false-negative, false-positive, and accuracy rates were 69%, 55%, 30%, 44%, and 64%, respectively (Table 3). TC invasion was seen on CT in 28 patients, 16 of whom had negative histopathological findings; the sensitivity, specificity, false-negative, false-positive, and accuracy rates were 84%, 71%, 15%, 28%, and 76%, respectively (Table 4). Finally, ELS was seen on CT in 25 patients, 7 of whom had negative histopathological findings; the sensitivity, specificity, false-negative, false-positive, and accuracy rates were 75%, 87%, 24%, 12%, and 83%, respectively (Table 5).

According to the McNemar test, the difference between the CT findings and histopathological findings was significant only for TC invasion (p<0.05). Given the small sample size, the Z test was used as a second test. This showed that the differences between the CT findings and histopathological findings were significant for ELS and PES, AC, TC, and SR invasion (p< 0.05).

Discussion

More than 90% of laryngeal cancers are SCC. Most cases occur in male smokers 51 to 60 years of age. SCC is classified into three types: infiltrative, bulky, and mixed. SCC may be restricted to the mucosal or submucosal regions, or deep invasion can occur. As endoscopic examination has a limited ability to detect submucosal or deep invasion, radiological imaging is often performed. Sometimes, however, radiological imaging may not yield accurate results, and histopathological examination may be necessary.

Table 1. Comparison of preoperative CT and postoperative histopathology in preepiglottic space invasion.

<table>
<thead>
<tr>
<th>Preoperative CT</th>
<th>Preepiglottic space invasion (histopathologically)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
</tr>
<tr>
<td>+</td>
<td>41</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>83%</td>
</tr>
<tr>
<td>Specificity</td>
<td>87%</td>
</tr>
<tr>
<td>False (+) value</td>
<td>12%</td>
</tr>
<tr>
<td>False (-) value</td>
<td>16%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>85%</td>
</tr>
</tbody>
</table>

Fig. 4. (a) Contrasted axial CT imaging of extralaryngeal strep muscles with invasion and (b) its histopathological image (HE ×10).

Fig. 5. Contrasted axial CT imaging of an early stage primary tumor on the right subglottic region, invasion to this site is observed by the pathologist macroscopically.
cal imaging also fails to reveal the depth of invasion because of the tumor location, radiologist’s interpretation, or imaging device used.\(^7\)

The most common site of invasion is the TC (37% of cases), and such invasion most frequently involves the midline.\(^8\) Once cartilage invasion occurs, the tumor is stage T3 or T4, and the success rate of RT decreases while the risk of recurrence, chondronecrosis, and a nonfunctional larynx after RT increase. In the past, conservative laryngeal surgery was used to manage laryngeal cancer with minimal cartilage invasion. More recently, however, more invasive surgery has been preferred.\(^9\) The reported sensitivity and specificity of CT for detecting cartilage invasion range from 46% to 91% and 68% to 94%, respectively.\(^10\) Because the TC consists of unmineralized hyaline cartilage, signs of invasion are difficult to detect.\(^11\) In this study, the sensitivity, specificity, false-negative, false-positive, and accuracy rates of the preoperative CT findings of cartilage invasion were 83%, 87%, 16%, 12%, and 85%, respectively. These results concur with the literature; nevertheless, there was a significant difference in the CT and postoperative histopathological findings of TC invasion.

The PES or Boyer’s space is a triangular region that contains a large amount of fat and small amounts of elastic fibers, collagen fibers, and lymphatic vessels. This space is bordered by the hyoepiglottic ligament superiorly, thyrohyoid membrane and thyroid cartilage anteriorly, and epiglottis and thyroepiglottic ligaments posteriorly.\(^12\) Because the epiglottis is a weak barrier, laryngeal cancer can spread to the PES. Once PES invasion occurs, the tumor is stage T3, the prognosis after RT is poorer, and the local metastasis rate increases.\(^13\) The reported sensitivity and specificity of CT findings for PES invasion are 86% and 73%, respectively.\(^14\) In this study, the sensitivity, specificity, false-negative, false-positive, and accuracy rates of the preoperative CT findings were 84%, 71%, 15%, 28%, and 76%, respectively, which concurs with the literature.

Table 2. Comparison of preoperative CT and postoperative histopathology in subglottic region invasion.

<table>
<thead>
<tr>
<th>Preoperative CT</th>
<th>Subglottic region invasion (histopathologically)</th>
<th>+</th>
<th>%</th>
<th>-</th>
<th>%</th>
<th>Total</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>49</td>
<td>55.05</td>
<td>9</td>
<td>10.11</td>
<td>58</td>
<td>65.16</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>9</td>
<td>10.11</td>
<td>22</td>
<td>24.71</td>
<td>31</td>
<td>34.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>65.16</td>
<td>31</td>
<td>34.82</td>
<td>89</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity 84%
Specificity 70%
False (+) value 29%
False (-) value 15%
Accuracy 79%

Table 3. Comparison of preoperative CT and postoperative histopathology in anterior commissure invasion.

<table>
<thead>
<tr>
<th>Preoperative CT</th>
<th>Anterior commissure invasion (histopathologically)</th>
<th>+</th>
<th>%</th>
<th>-</th>
<th>%</th>
<th>Total</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>38</td>
<td>42.69</td>
<td>15</td>
<td>16.85</td>
<td>53</td>
<td>59.55</td>
<td>0.860</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>17</td>
<td>19.10</td>
<td>19</td>
<td>21.34</td>
<td>36</td>
<td>40.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>59.79</td>
<td>34</td>
<td>38.19</td>
<td>89</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity 69%
Specificity 55%
False (+) value 44%
False (-) value 30%
Accuracy 64%

Table 4. Comparison of preoperative CT and postoperative histopathology in thyroid cartilage invasion.

<table>
<thead>
<tr>
<th>Preoperative CT</th>
<th>Thyroid cartilage invasion (histopathologically)</th>
<th>+</th>
<th>%</th>
<th>-</th>
<th>%</th>
<th>Total</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>28</td>
<td>31.46</td>
<td>16</td>
<td>17.97</td>
<td>44</td>
<td>49.43</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5</td>
<td>5.61</td>
<td>40</td>
<td>44.94</td>
<td>45</td>
<td>50.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>37.07</td>
<td>56</td>
<td>62.91</td>
<td>89</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity 84%
Specificity 71%
False (+) value 28%
False (-) value 15%
Accuracy 76%

Table 5. Comparison of preoperative CT and postoperative histopathology in extralaryngeal invasion.

<table>
<thead>
<tr>
<th>Preoperative CT</th>
<th>Extralaryngeal invasion (histopathologically)</th>
<th>+</th>
<th>%</th>
<th>-</th>
<th>%</th>
<th>Total</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>25</td>
<td>28.08</td>
<td>7</td>
<td>7.86</td>
<td>53</td>
<td>59.55</td>
<td>0.791</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>8.98</td>
<td>49</td>
<td>55.05</td>
<td>36</td>
<td>40.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>37.06</td>
<td>56</td>
<td>62.91</td>
<td>89</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity 75%
Specificity 87%
False (+) value 12%
False (-) value 24%
Accuracy 83%
The SR is a transition zone between the larynx and trachea, where stratified squamous epithelium changes to respiratory epithelium. Primary cancer of the SR is rare, and most SR cancer occurs as a result of invasion from other parts of the larynx. In the past, a laryngeal tumor at the level of the cricoid cartilage was called SR cancer. The conus elasticus is found between the free border of the vocal cord and upper part of the cricoid cartilage; it serves as a relative barrier, and a tumor may spread laterally and anteriorly to the SR along the conus elasticus. When a tumor invades this membrane, cricoid invasion follows, and the tumor is stage T4.[13] Souza et al. reported that the accuracy, sensitivity, and specificity of CT findings for SR invasion were 95.0%, 100.0%, and 93.5%, respectively, while we obtained sensitivity, specificity, false-negative, false-positive, and accuracy rates of preoperative CT findings for SR invasion were 79%, 70%, 15%, 29%, and 79%, respectively.[14] Our results are lower than those previously reported, possibly because SR region invasion can be confused with bulging of a tumor.

According to Olofsson, the AC is a small region limited by the anterior angle of the ventricles and is located 2 to 3 mm inferior to the anterior parts of the vocal cords. Tumors in the midline of the laryngeal surface of the epiglottis invade the AC. This results in TC invasion along Broyles’ ligament.[17] When a tumor is closer than 2 to 3 mm from the AC, conservative surgery to protect the voice is no longer appropriate. With gross tumor invasion of the AC, the reported accuracy of CT was 96.5%.[11] In our study, the sensitivity, specificity, false-negative, false-positive, and accuracy rates of the preoperative CT findings were 69%, 55%, 30%, 44%, and 64%, respectively. Our results are lower than reported, possibly because of the poor quality of imaging, high tumor grade, and bulging of the vocal cord tumors.

Extralaryngeal spread can occur in many ways. The tumor can penetrate the cartilage and spread to the strap muscles and anterior and lateral soft tissues. Spread to the anterior soft tissues can follow invasion of the thyrohyoid membrane, pre-epiglottic space, paraglottic space, and constrictive muscles. Spread to the piriform sinus laterally and to the interarytenoid, postcricoid, hypopharynx, and proximal esophagus posteriorly can be seen, as can spread to the cricothyroid membrane and cervical trachea inferiorly. Once such spread occurs, the tumor is deemed stage T4. In our study, the sensitivity and positive predictive value of preoperative CT findings of ELS were 82% and 49%, respectively.[19] In our study, the sensitivity, specificity, false-negative, false-positive, and accuracy rates of preoperative CT were 75%, 87%, 15%, 12%, and 76%, respectively, concurring with previously reported values.

Conclusion

Our study is first reported in the literature that evaluated all of the critical regions for the total or partial laryngectomy on computed tomography in advanced laryngeal cancer. Statistical analysis showed that preoperative CT imaging does not provide dependable information about ELS or invasion of the PES, AC, TC, or SR. Consequently, these regions are potential preoperative traps. Tumor invasion to these regions affects patient management and should thus be assessed during surgery using frozen section analysis.

Conflict of Interest: No conflicts declared.

References

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND3.0) Licence (http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.